
What’s new in Solidity

ETHonline. October 8, 2021



Toy Problem

I Suppose you want to write a smart contract that sells some
object.

I The object has a price.
I There is a limited quantity of the object available.

Problem: A user wants to buy some quantity of the object, and you
want to compute the total price.



Solution 1: using regular variables

function total_price(uint quantity, uint price) pure returns (uint) {
return quantity * price;

}

Issues
I We want type safety to prevent mixing quantity and price.
I Ideally quantity and price should be two different types.
I The type only represents the underlying data representation

and not how the data should be interpreted.



Solution 2: Using structs

struct Quantity { uint quantity; }
struct Price { uint price; }

function total_price(
Quantity memory q,
Price memory p

) pure returns(uint) {
return q.quantity * p.price;

}

Issues
I Not efficient.
I A struct is a reference type. It is a pointer towards calldata,

memory or storage.
I The actual value has to be stored in one of these locations. In

the above example: memory.



Stack and Memory in EVM

I The EVM is a stack based machine: you do operations using
the stack.
You can push a value to the top and do various operations.

I Memory is a temporary location in EVM where you can store
things and read later.

I Stack is cheaper and more fundamental than memory.
I First approach: values in stack.
I Second approach: values are in memory.



Stack v/s Memory

I Putting a value in the stack (push val): 3 gas.
I Consuming that value: no extra cost.
I Reading a value (copying) from stack: 3 gas.
I Putting a value in memory: mstore(a, b):

I Putting b in stack: 3 gas,
I Putting a in stack: 3 gas,
I mstore: 3 gas (mstore) + ≥ 3 gas (memory expansion cost),
I Total: ≥ 12 gas.

I Read a value from memory: mload(a):
I Putting a in stack: 3 gas,
I mload: 3 gas,
I Total: 6 gas.



User Defined Value Types: a zero cost abstraction

I Can be used from solidity 0.8.9.
I A way to create an alias.
I Additional type safety.
I Syntax: type U is V;
I U is the new type.
I V is an elementary value type (uint, address, int8, etc.)



Solution 3: User Defined Value Types

pragma solidity ^0.8.9;

type Quantity is uint;
type Price is uint;

function total_price(Quantity q, Price p) pure returns(uint) {
return Quantity.unwrap(q) * Price.unwrap(p);

}

I Quantity.unwrap for converting Quantity to uint (the
underlying type here.)

I Quantity.wrap for converting uint to Quantity.



Backwards compatibility

pragma solidity ^0.8.9;

type Decimal18 is uint256;

interface MinimalERC20 {
function transfer(address to, Decimal18 value) external;

}

interface AnotherMinimalERC20 {
function transfer(address to, uint256 value) external;

}



Open questions

User defined value types does not have operators right now, but we
would like to have them:
type Decimal18 is uint256;

// Need a syntax to create operator += for Decimal18

contract MinimalToken {
mapping (address => Decimal18) public balancesOf;
function _mint(address user, Decimal18 value) internal {

// Proof of concept: DOES NOT COMPILE.
balanceOf[user] += value;

}
}

Participate in the discussion:
1. https://forum.soliditylang.org/t/

user-defined-types-and-operators/456

2. https://github.com/ethereum/solidity/issues/11969

https://forum.soliditylang.org/t/user-defined-types-and-operators/456
https://forum.soliditylang.org/t/user-defined-types-and-operators/456
https://github.com/ethereum/solidity/issues/11969


Telling a user why a transaction failed

contract Vault {
address immutable owner = msg.sender;
modifier onlyOwner() {

// DO NOT DO THIS.
require(

owner == msg.sender,
"The caller was not the owner of the contract."

);
_;

}
function withdraw() onlyOwner external {

// do something
}

}

Issues
I Higher deploy cost for contracts.
I Higher runtime cost for reverts.



Custom Errors

pragma solidity ^0.8.4;

/// @notice The caller was not the owner of the contract
error OnlyOwner();

contract Ownable {
address immutable owner = msg.sender;

modifier onlyOwner() {
if (msg.sender != owner)

revert OnlyOwner();
_;

}

function withdraw() onlyOwner external {
// ...

}
}



Difference

Before
modifier onlyOwner() {

require(
msg.sender == owner,
"Ownable: caller is not the owner."

);
_;

}

After
modifier onlyOwner() {

if (msg.sender != owner)
revert OnlyOwner();

_;
}

I Cheaper contract deploy cost / smaller bytecode.
I Lower cost for reverting transactions.



Complex revert strings
function uint2str(uint i) pure returns (string memory) {

// ...
}

contract Token {
mapping (address => uint256) public balanceOf;
function transfer(address to, uint256 value) external {

// DO NOT DO THIS!
require(

balanceOf[to] >= value,
string(abi.encodePacked(

"Insufficient balance for address: ",
uint2str(uint160(to)),
". Current: ",
uint2str(balanceOf[to]),
". Required: ",
uint2str(value)

))
);
// ...

}
}



With arguments
type Decimal18 is uint256;
/// The user `sender` did not have enough balance.
/// Current balance: `current`.
/// Required balance: `required`.
error InsufficientBalance(

address sender,
Decimal18 current,
Decimal18 required

);
contract Token {

mapping (address => Decimal18) public balanceOf;
function transfer(address to, Decimal18 value) external {

if (Decimal18.unwrap(balanceOf[to]) < Decimal18.unwrap(value))
revert InsufficientBalance(

msg.sender,
balanceOf[to],
value

);
// ...

}
}



Custom Errors: Tooling Support

I Ethers-js
I Hardhat
I Truffle
I Remix
I Dapptools
I . . .



About

Hari.
Solidity team
Slides: https://hrkrshnn.com/t/ethglobal2021.pdf
Contact: https://hrkrshnn.com
Solidity: https://soliditylang.org/

https://hrkrshnn.com/t/ethglobal2021.pdf
https://hrkrshnn.com
https://soliditylang.org/

